1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
| # Some part of the code was referenced from below. # https://github.com/pytorch/examples/tree/master/word_language_model import torch import torch.nn as nn import numpy as np from torch.nn.utils import clip_grad_norm from data_utils import Dictionary, Corpus
# Device configuration device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Hyper-parameters embed_size = 128 hidden_size = 1024 num_layers = 1 num_epochs = 5 num_samples = 1000 # number of words to be sampled batch_size = 20 seq_length = 30 learning_rate = 0.002
# Load "Penn Treebank" dataset corpus = Corpus() ids = corpus.get_data('data/train.txt', batch_size) vocab_size = len(corpus.dictionary) num_batches = ids.size(1) // seq_length
# RNN based language model class RNNLM(nn.Module): def __init__(self, vocab_size, embed_size, hidden_size, num_layers): super(RNNLM, self).__init__() self.embed = nn.Embedding(vocab_size, embed_size) self.lstm = nn.LSTM(embed_size, hidden_size, num_layers, batch_first=True) self.linear = nn.Linear(hidden_size, vocab_size) def forward(self, x, h): # Embed word ids to vectors x = self.embed(x) # Forward propagate LSTM out, (h, c) = self.lstm(x, h) # Reshape output to (batch_size*sequence_length, hidden_size) out = out.reshape(out.size(0)*out.size(1), out.size(2)) # Decode hidden states of all time steps out = self.linear(out) return out, (h, c)
model = RNNLM(vocab_size, embed_size, hidden_size, num_layers).to(device)
# Loss and optimizer criterion = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
# Truncated backpropagation def detach(states): return [state.detach() for state in states]
# Train the model for epoch in range(num_epochs): # Set initial hidden and cell states states = (torch.zeros(num_layers, batch_size, hidden_size).to(device), torch.zeros(num_layers, batch_size, hidden_size).to(device)) for i in range(0, ids.size(1) - seq_length, seq_length): # Get mini-batch inputs and targets inputs = ids[:, i:i+seq_length].to(device) targets = ids[:, (i+1):(i+1)+seq_length].to(device) # Forward pass states = detach(states) outputs, states = model(inputs, states) loss = criterion(outputs, targets.reshape(-1)) # Backward and optimize model.zero_grad() loss.backward() clip_grad_norm(model.parameters(), 0.5) optimizer.step()
step = (i+1) // seq_length if step % 100 == 0: print ('Epoch [{}/{}], Step[{}/{}], Loss: {:.4f}, Perplexity: {:5.2f}' .format(epoch+1, num_epochs, step, num_batches, loss.item(), np.exp(loss.item())))
# Test the model with torch.no_grad(): with open('sample.txt', 'w') as f: # Set intial hidden ane cell states state = (torch.zeros(num_layers, 1, hidden_size).to(device), torch.zeros(num_layers, 1, hidden_size).to(device))
# Select one word id randomly prob = torch.ones(vocab_size) input = torch.multinomial(prob, num_samples=1).unsqueeze(1).to(device)
for i in range(num_samples): # Forward propagate RNN output, state = model(input, state)
# Sample a word id prob = output.exp() word_id = torch.multinomial(prob, num_samples=1).item()
# Fill input with sampled word id for the next time step input.fill_(word_id)
# File write word = corpus.dictionary.idx2word[word_id] word = '\n' if word == '<eos>' else word + ' ' f.write(word)
if (i+1) % 100 == 0: print('Sampled [{}/{}] words and save to {}'.format(i+1, num_samples, 'sample.txt'))
# Save the model checkpoints torch.save(model.state_dict(), 'model.ckpt')
|