Ex_treme's blog.

flask发布手写字识别模型

2018/11/26 Share

模型模块

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
import tensorflow as tf


# 定义线性模型 Y = W * X + b
def regression(x):
W = tf.Variable(tf.zeros([784, 10]), name='W')
b = tf.Variable(tf.zeros([10]), name='b')
y = tf.nn.softmax(tf.matmul(x, W) + b)

return y, [W, b]


# 定义卷积模型
def convolutional(x, keep_prob):
# 定义卷积层
def conv2d(x, W):
return tf.nn.conv2d(x, W, [1, 1, 1, 1], padding='SAME')

# 定义池化层
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)

def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial)

x_image = tf.reshape(x, [-1, 28, 28, 1])
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

# full connection
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# full connection
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

return y, [W_conv1, b_conv1, W_conv2, b_conv2, W_fc1, b_fc1, W_fc2, b_fc2]

模型驱动

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import numpy as np
import tensorflow as tf
from flask import Flask,jsonify,render_template,request
import json
from mnist import model
x = tf.placeholder('float', [None, 784])
sess = tf.Session()

with tf.variable_scope('regression'):
y1, variables = model.regression(x)
saver = tf.train.Saver(variables)
saver.restore(sess,"mnist/data/regression.ckpt")

with tf.variable_scope("convolutional"):
keep_prob = tf.placeholder('float')
y2, variables = model.convolutional(x,keep_prob)
saver = tf.train.Saver(variables)
saver.restore(sess, "mnist/data/convolutional.ckpt")

def regression(input):
return sess.run(y1, feed_dict={x:input}).flatten().tolist()
def convolutional(input):
return sess.run(y2, feed_dict={x:input,keep_prob:1.0}).flatten().tolist()

框架驱动

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25


app = Flask(__name__)
@app.route('/api/mnist', methods=['post'])
def mnist():
input = ((255 - np.array(request.json, dtype=np.uint8)) / 255.0).reshape(1,784)
output1 = regression(input)
output2 = convolutional(input)

output = {}
output["output1"] = output1
output["output2"] = output2
res = []
res.append(output)
a = {}
a['site'] = res
mydata = json.dumps(a, ensure_ascii=False).encode("utf8")
return mydata
@app.route('/')
def main():
return render_template('index.html')

if __name__ == "__main__":
app.debug = True
app.run(port=9000)

静态文件

https://github.com/byerHu/mnist_web

image

CATALOG
  1. 1. 模型模块
  2. 2. 模型驱动
  3. 3. 框架驱动
  4. 4. 静态文件
    1. 4.1. https://github.com/byerHu/mnist_web